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Dimeriaations of mono- and l,j-disubstituted allenes have received substantial attention 

in recent years, 
la,b 

and some stereochemical aspects of the reaction are becoming clear. With 

halogen and phenyl substituted allenes, the 1,2-dimethylenecyclobutane products are formed 

with substituents on the ring being predominantly trans and with double bond substituents be- 

ing ~JXI, that is, directed inside the cavity of the cisoid diene system. 
lb 

This pattern was 

established with methyl as a substituent when all seven possible non-geminal dimethyl 1,2-di- 

methylenecyclobutanes from the dimerixation of methylallene were identified and the distribu- 

tion of these examined under conditions where product fractionation by subsequent reaction was 

minimal.= We wish to report further data on the stereochemistry of the allene dimerisation 

using racemic and partially resolveda 2,j-pentadiene, A, as a substrate. 

Dimerizations of Lwwere conducted in sealed tubes at 140" (allene to tube volume ratio 

1:4). The dimer fraction from an intial 20-hr reaction was found to consist of six components 

on a di-g-butyltetrachlorophthalate (DBTCP) capillary vpc column. These components were sepa- 

rated on a preparative DBTCP column and were identified by their 220 Mfla proton magnetic reso- 

nance spectra. The assignment of stereochemistry rests on comparison of chemical shift dif- 

ferences with those of the dimers of methylallene whose stereostructures were assigned chemi- 

cally.= Thus, trans ring methyl groups are at lower field than cis ring-methyl groups; trans - 

ring hydrogens are at higher field than cis ring hydrogens; - allylic methyls are at lower - 

field than anti allylic methyls; vinyl protons on s-ethylidene groups are at lover field 

than vinyl protons on anti-ethylidenes. The nmr spectra of the dimers are given in the table. 

The distribution of dimeric products from simultaneous 19-hr reactions with racemic and 

optically active & [u]F = +17.1" (neat), at l.40" is listed in the table. Also listed are 

the results of an identical experiment run at 140" for only 1 hr. In a separate but compara- 

ble (allene to tube volume ratio, etc.) experiment optically active 5, [o12ae = + 15.1' 
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Table I. Distribution of Dimeric Products from Eacemic and 

5 at 140°,a end F&nrb Spectra of the Products All Listed in 

c01ulans 

k (rat) 

;t (act) 

& (rat) 

& (act) 

19-hr rxnC 

19-hr rxnd 

l-hr rxnf 

1-hr rxnf 

Ring we Ii’2 

Allylic Me H'sg 

Ring Wsh 

Vinyl E*si 

Optically Active 2,3-Pentadiene, 

Order of Emergence from DBTCP vpc 

I- 

L&YE 

31.8 zt 0.8 

32.6 i 0.5 

29.3 f 0.2 

32.9 f 2.3 

1.08, 1.20 

1.65, 1.69 

2.18, 2.36 

5.00, 5.46 

4. i. 

LY819 Iebi? 

47.7 f 4.3e 

45.0 

50.4 f 0.8 

46.1 f 3.2 

5 

c1s>9 

10.8 f 0.1 

10.4 * 0.3 

IL.2 -f 0.6 

13.6 f 0.8 

* 

c7a,a 

6.8 f 0.2 

7.4 i 0.2 

7.1 f 0.4 

5.8 f 0.2 

1.6 f 0.2 

1.8 * 0.3 

1.2 f 0.2 

1.8 * 0.4 

1.08 1.18 0.94 0.97, 1.05 1.07 

1.76 1.59 1.75 1.65, I.69 1.59 

2.19 2.19 2.74 2.88 2.99 

4.91 5.34 5.02 5.00, 5.41 5.30 

-IT 
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"The two 19-hr rxns were conducted simultaneously at nearly identical internal pressures. 

The same was true for the 1-hr reactions. 
b 
At 220 MHz in Ccl, reported in ppm downfield from 

Tug. '1.3% of an unknown was also formed. 
d 
2.9 of an unknown was also formed. eAs a 3:l 

mixture of z:k by nmr. 
f 
Average of two runs. gEach signal was a doublet, J = 7 Hz. 

h 
Complex 

multiplets. 
i 
Each signal was a doublet of doublets, J = 7 and 2 Hz. 

(c = 23 in CHCls), was heated at 140" for 1 hr, and 75s of &was recovered; it had co]& = 

+ UC.70 (C = 23 in CEC~,). Thus, 2 did not racemise substantially under conditions necessary 

to effect 252 dimerization of &. Finally, in separate l-hr and 20-hr dimerizations of opti- 

cally active & C(Y)? = +17.1" (neat), 2, and the mixture of 2 and 4 were isolated, and the 

specific rotations of each were found to be + 0.5 f 0.5" at 546 nm from both runs. 

The data in the table reveal that formation of the trans-3,4-dimethyl-1,2_diethylidene- 

cyclobutanes is favored by a factor of 4 over the cis materials, that within the trans family - 

the ratio of 9,~ to syn,anti to anti,anti dimethyl substitution on the double bond is 3.0: 

2.5:l, and in the cis family the corresponding ratio is 7:4.5:1. These ratios should be con- - 

trasted with those from the dimethylenecyclobutanes derived from the methylallene dimerization 

where the 88 to z to aa ratio is 26:6:1;2 it should also be noted that the trans to cis ratio -- 

of 3,4-dimethyl material from the methylallene dimerization is 6:l.2 
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The observation that the mixture of trans dimers, 2 and k, formed from partly resolved 1 

is essentially racemic is evidence against a "face to face", four-center interaction between 

two double bonds, a 2ns + 2ns cycloaddition, 4 in the allene dimeriaation since this process 

must give optically active 2 and &(albeit of opposite absolute configurations). A 2s +2s 

cycloaddition4 would require that s result from an interaction of opposite enantiomers of 1 

and, therefore, it must be racemic; however, absence of activity in 2 is a necessary but not 

sufficient condition for intervention of this pathway; other pathways, particularly a 2s + 2a 

cycloaddition, can give the same result. 

27-m +2lla 

Recently, Moore' found that dimerisation of about 90$ optically pure 1,2-cyclononadiene 

gave substantially greater amounts of a e dimer (equivalent to cis,anti,anti, i, relative 

to a cl_1 material (equivalent to trans,anti,anti, k) than in the dimerization of racemic 1,2- 

cyclononadiene. This result is consistent with an orbital symmetry allowed 2s +2a cycloaddi- 

tion, a reaction which in the cyclic case would allow formation of only the meso material from 

optically pure allene. If a 2s + 2a mechanism were operative in the dimerisation of I-, possi- 

bly racemic 2, a and 1 should be obtained from one enantiomer of 1 while racemic 3 Z, and 1 

as well as racemic 2 k, and 6 should result from dimerization of racemic 1. _ The product dis- 

tributions obtained from optically active &reflect to a small extent these predictions. But 

the 2,j-pentadiene used was only about 10% optically pure, and if one assumes a 2s + 2a path- 

way, a simple calculation reveals that the relative changs in product distributions from race- 

mic and 10s optically pure L should be only one percentage point. Thus, the deviations ex- 

petted were within the error limit of the analysis, and no proof of the intervention of the 

2s + 2a pathway can be deduced from the product distribution. However, the 2s + 2a pathway 

predicts the formation of racemic 2 and k and possibly 2 from dimeriaation of optically active 

2 these predictions are consistent with the results. 

Also consistent with these results is a mechanism proceeding via 2,2'-bisallyl diradicals - 
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which are formed non-stereospecifically, that is, by random rotations about the developing al- 

lyic radical termini; however, Moore's result5 as well as other examples of stereospecific ad- 

ditions to allene@ cast doubt on this interpretation. On the other hand, the cycloaddition of 

acrylonitrile and optically active 2,3-pentadiene reported by Baldwin7 which gives all four 2- 

methyl-3-ethylidenecyanocyclobutanes with the same configuration at C-2 cannot proceed via a - 

2s + 2a or a 2s + 2s cycloaddition if it is assumed that the acrylonitrile retains its stereo- 

chemistry. Thus, mechanistic alternatives to a 2s + 2a cycloaddition' might be necessary in 

the allene dimerization. 

A number of additional questions remain unanswered in the allene dimerization. For in- 

stance, how is the 2,2*-bisallyl diradical related to the transition state for the dimeriza- 

tion? What is the relationship between the degenerate rearrangement of 1,2-dimethylenecyclo- 

butane2 and the dimerisation? Why are --substituted exocyclic double bonds in the product 

favored in the dimerization? We hope to report on these matters in the future. 
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